Testing a molecular clock without an outgroup: derivations of induced priors on branch-length restrictions in a Bayesian framework.
نویسندگان
چکیده
We propose a Bayesian method for testing molecular clock hypotheses for use with aligned sequence data from multiple taxa. Our method utilizes a nonreversible nucleotide substitution model to avoid the necessity of specifying either a known tree relating the taxa or an outgroup for rooting the tree. We employ reversible jump Markov chain Monte Carlo to sample from the posterior distribution of the phylogenetic model parameters and conduct hypothesis testing using Bayes factors, the ratio of the posterior to prior odds of competing models. Here, the Bayes factors reflect the relative support of the sequence data for equal rates of evolutionary change between taxa versus unequal rates, averaged over all possible phylogenetic parameters, including the tree and root position. As the molecular clock model is a restriction of the more general unequal rates model, we use the Savage-Dickey ratio to estimate the Bayes factors. The Savage-Dickey ratio provides a convenient approach to calculating Bayes factors in favor of sharp hypotheses. Critical to calculating the Savage-Dickey ratio is a determination of the prior induced on the modeling restrictions. We demonstrate our method on a well-studied mtDNA sequence data set consisting of nine primates. We find strong support against a global molecular clock, but do find support for a local clock among the anthropoids. We provide mathematical derivations of the induced priors on branch length restrictions assuming equally likely trees. These derivations also have more general applicability to the examination of prior assumptions in Bayesian phylogenetics.
منابع مشابه
Bayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models
Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...
متن کاملTail paradox, partial identifiability, and influential priors in Bayesian branch length inference.
Recent studies have observed that Bayesian analyses of sequence data sets using the program MrBayes sometimes generate extremely large branch lengths, with posterior credibility intervals for the tree length (sum of branch lengths) excluding the maximum likelihood estimates. Suggested explanations for this phenomenon include the existence of multiple local peaks in the posterior, lack of conver...
متن کاملWhen Can Finite Testing Ensure Infinite Trustworthiness?
In this paper we contribute to the general philosophical question as to whether empirical testing can ever prove a physical law. Problems that lead to this question arise under several contexts, and the matter has been addressed by the likes of Bayes and Laplace. After pointing out that a Bayesian approach is the proper way to address this problem, we show that the answ...
متن کاملBayes, E-Bayes and Robust Bayes Premium Estimation and Prediction under the Squared Log Error Loss Function
In risk analysis based on Bayesian framework, premium calculation requires specification of a prior distribution for the risk parameter in the heterogeneous portfolio. When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis can be used to handle the uncertainty in specifying the prior distribution by considering a class of priors instead of a single prior. In th...
متن کاملRobustness of compound Dirichlet priors for Bayesian inference of branch lengths.
We modified the phylogenetic program MrBayes 3.1.2 to incorporate the compound Dirichlet priors for branch lengths proposed recently by Rannala, Zhu, and Yang (2012. Tail paradox, partial identifiability and influential priors in Bayesian branch length inference. Mol. Biol. Evol. 29:325-335.) as a solution to the problem of branch-length overestimation in Bayesian phylogenetic inference. The co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Systematic biology
دوره 52 1 شماره
صفحات -
تاریخ انتشار 2003